203 research outputs found

    Consequences of non-random species loss for decomposition dynamics: experimental evidence for additive and non-additive effects

    Full text link
    1.   Although litter decomposition is a fundamental ecological process, most of our understanding comes from studies of single-species decay. Recently, litter-mixing studies have tested whether monoculture data can be applied to mixed-litter systems. These studies have mainly attempted to detect non-additive effects of litter mixing, which address potential consequences of random species loss – the focus is not on which species are lost, but the decline in diversity per se . 2.   Under global change, species loss is likely to be non-random, with some species more vulnerable to extinction than others. Under such scenarios, the effects of individual species (additivity) as well as of species interactions (non-additivity) on decomposition rates are of interest. 3.   To examine potential impacts of non-random species loss on ecosystems, we studied additive and non-additive effects of litter mixing on decomposition. A full-factorial litterbag experiment was conducted using four deciduous leaf species, from which mass loss and nitrogen content were measured. Data were analysed using a statistical approach that first looks for additive identity effects based on the presence or absence of species and then significant species interactions occurring beyond those. It partitions non-additive effects into those caused by richness and/or composition. 4.   This approach addresses questions key to understanding the potential effects of species loss on ecosystem processes. If additive effects dominate, the consequences for decomposition dynamics will be predictable based on our knowledge of individual species, but not statistically predictable if non-additive effects dominate. 5.   We found additive (identity) effects on mass loss and non-additive (composition) effects on litter nitrogen dynamics, suggesting that non-random species loss could significantly affect this system. We were able to identify the species responsible for effects that would otherwise have been considered idiosyncratic or absent when analysed by the methods used in previous work. 6.   Synthesis . We observed both additive and non-additive effects of litter-mixing on decomposition, indicating consequences of non-random species loss. To predict the consequences of global change for ecosystem functioning, studies should examine the effects of both random and non-random species loss, which will help identify the mechanisms that influence the response of ecosystems to environmental change.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73943/1/j.1365-2745.2007.01346.x.pd

    Field Pea Variety Trial Archive

    Get PDF
    This report features the available pea data from 2003-2017. Crop performance testing results are released annually through the activities of SDSU Extension and the South Dakota Agricultural Experiment Station at SDSU

    Compressive Behavior of Concrete with Vitrified Soil Aggregate

    Full text link

    Spring Wheat Variety Trial Archive

    Get PDF
    Crop performance testing results are released annually through the activities of SDSU Extension and the South Dakota Agricultural Experiment Station at SDSU

    Oats Variety Trial Archive

    Get PDF
    This report features the available oats data from 2003-2017. Crop performance testing results are released annually through the activities of SDSU Extension and the South Dakota Agricultural Experiment Station at SDSU

    Winter Wheat Variety Trial Archive

    Get PDF
    Crop performance testing results are released annually through the activities of SDSU Extension and the South Dakota Agricultural Experiment Station at SDSU

    Identifying the science and technology dimensions of emerging public policy issues through horizon scanning

    Get PDF
    Public policy requires public support, which in turn implies a need to enable the public not just to understand policy but also to be engaged in its development. Where complex science and technology issues are involved in policy making, this takes time, so it is important to identify emerging issues of this type and prepare engagement plans. In our horizon scanning exercise, we used a modified Delphi technique [1]. A wide group of people with interests in the science and policy interface (drawn from policy makers, policy adviser, practitioners, the private sector and academics) elicited a long list of emergent policy issues in which science and technology would feature strongly and which would also necessitate public engagement as policies are developed. This was then refined to a short list of top priorities for policy makers. Thirty issues were identified within broad areas of business and technology; energy and environment; government, politics and education; health, healthcare, population and aging; information, communication, infrastructure and transport; and public safety and national security.Public policy requires public support, which in turn implies a need to enable the public not just to understand policy but also to be engaged in its development. Where complex science and technology issues are involved in policy making, this takes time, so it is important to identify emerging issues of this type and prepare engagement plans. In our horizon scanning exercise, we used a modified Delphi technique [1]. A wide group of people with interests in the science and policy interface (drawn from policy makers, policy adviser, practitioners, the private sector and academics) elicited a long list of emergent policy issues in which science and technology would feature strongly and which would also necessitate public engagement as policies are developed. This was then refined to a short list of top priorities for policy makers. Thirty issues were identified within broad areas of business and technology; energy and environment; government, politics and education; health, healthcare, population and aging; information, communication, infrastructure and transport; and public safety and national security

    Riparian Plant Litter Quality Increases With Latitude

    Get PDF
    Plant litter represents a major basal resource in streams, where its decomposition is partly regulated by litter traits. Litter-trait variation may determine the latitudinal gradient in decomposition in streams, which is mainly microbial in the tropics and detritivore-mediated at high latitudes. However, this hypothesis remains untested, as we lack information on large-scale trait variation for riparian litter. Variation cannot easily be inferred from existing leaf-trait databases, since nutrient resorption can cause traits of litter and green leaves to diverge. Here we present the first global-scale assessment of riparian litter quality by determining latitudinal variation (spanning 107°) in litter traits (nutrient concentrations; physical and chemical defences) of 151 species from 24 regions and their relationships with environmental factors and phylogeny. We hypothesized that litter quality would increase with latitude (despite variation within regions) and traits would be correlated to produce ‘syndromes’ resulting from phylogeny and environmental variation. We found lower litter quality and higher nitrogen:phosphorus ratios in the tropics. Traits were linked but showed no phylogenetic signal, suggesting that syndromes were environmentally determined. Poorer litter quality and greater phosphorus limitation towards the equator may restrict detritivore-mediated decomposition, contributing to the predominance of microbial decomposers in tropical streams

    Riparian plant litter quality increases with latitude

    Get PDF
    Plant litter represents a major basal resource in streams, where its decomposition is partly regulated by litter traits. Litter-trait variation may determine the latitudinal gradient in decomposition in streams, which is mainly microbial in the tropics and detritivore-mediated at high latitudes. However, this hypothesis remains untested, as we lack information on large-scale trait variation for riparian litter. Variation cannot easily be inferred from existing leaf-trait databases, since nutrient resorption can cause traits of litter and green leaves to diverge. Here we present the first global-scale assessment of riparian litter quality by determining latitudinal variation (spanning 107 degrees) in litter traits (nutrient concentrations; physical and chemical defences) of 151 species from 24 regions and their relationships with environmental factors and phylogeny. We hypothesized that litter quality would increase with latitude (despite variation within regions) and traits would be correlated to produce 'syndromes' resulting from phylogeny and environmental variation. We found lower litter quality and higher nitrogen: phosphorus ratios in the tropics. Traits were linked but showed no phylogenetic signal, suggesting that syndromes were environmentally determined. Poorer litter quality and greater phosphorus limitation towards the equator may restrict detritivore-mediated decomposition, contributing to the predominance of microbial decomposers in tropical streams.We thank the many assistants who helped with field work (Ana Chara-Serna, Francisco Correa-Araneda, Juliana Franca, Lina Giraldo, Stephanie Harper, Samuel Kariuki, Sylvain Lamothe, Lily Ng, Marcus Schindler, etc.), Cristina Grela Docal for helping with leaf chemical analyses, and Fernando Hiraldo (former director of EBD-CSIC) for his support. The study was funded by start-up funds from the Donana Biological Station (EBD-CSIC, Spain) and from Ikerbasque to LB, the Fundacao para a Ciencia e Tecnologia (FCT) strategic project ID/MAR/04292/2013 granted to MARE (Portugal), the 'BIOFUNCTION' project (CGL2014-52779-P) from the Spanish Ministry of Economy and Competitiveness (MINECO) and FEDER to LB and J. Pozo, and Basque Government funds (IT302-10) to J. Pozo

    Heart Rate Recovery After Exercise Is Associated With Arrhythmic Events in Patients With Catecholaminergic Polymorphic Ventricular Tachycardia

    Get PDF
    BACKGROUND: Risk stratification in catecholaminergic polymorphic ventricular tachycardia remains ill defined. Heart rate recovery (HRR) immediately after exercise is regulated by autonomic reflexes, particularly vagal tone, and may be associated with symptoms and ventricular arrhythmias in patients with catecholaminergic polymorphic ventricular tachycardia. Our objective was to evaluate whether HRR after maximal exercise on the exercise stress test (EST) is associated with symptoms and ventricular arrhythmias. METHODS: In this retrospective observational study, we included patients ≤65 years of age with an EST without antiarrhythmic drugs who attained at least 80% of their age- and sex-predicted maximal HR. HRR in the recovery phase was calculated as the difference in heart rate (HR) at maximal exercise and at 1 minute in the recovery phase (ΔHRR1'). RESULTS: We included 187 patients (median age, 36 years; 68 [36%] symptomatic before diagnosis). Pre-EST HR and maximal HR were equal among symptomatic and asymptomatic patients. Patients who were symptomatic before diagnosis had a greater ΔHRR1' after maximal exercise (43 [interquartile range, 25-58] versus 25 [interquartile range, 19-34] beats/min; P<0.001). Corrected for age, sex, and relatedness, patients in the upper tertile for ΔHRR1' had an odds ratio of 3.4 (95% CI, 1.6-7.4) of being symptomatic before diagnosis (P<0.001). In addition, ΔHRR1' was higher in patients with complex ventricular arrhythmias at EST off antiarrhythmic drugs (33 [interquartile range, 22-48] versus 27 [interquartile range, 20-36] beats/min; P=0.01). After diagnosis, patients with a ΔHRR1' in the upper tertile of its distribution had significantly more arrhythmic events as compared with patients in the other tertiles (P=0.045). CONCLUSIONS: Catecholaminergic polymorphic ventricular tachycardia patients with a larger HRR following exercise are more likely to be symptomatic and have complex ventricular arrhythmias during the first EST off antiarrhythmic drug
    • …
    corecore